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By using an asymptotic approach [l], the method of partitioning the state of 
stress is extended to thermoelastic shells. It is examined in detail in [2] forun- 

heated shells subjected to the effect of external forces, and consists of repre- 

senting the total state of stress of the shell as the sum of those simpler states 

of stress for each of which the simplest methods for their construction can be 

given. 
Partitioning of the state of stress was performed in [3] for shells with a con- 

stant temperature over the thickness. It was noted in [4] in an analysis of a 

circular cylindrical shell by bending theory that integrals extended over the 
whole middle surface, which describe the fundamental state of stress, and integ- 

rals which damp out with distance from the edges and represent edge effects 

are contained in the general solution. In a number of papers, [5] for example, 

partitioning is performed on the basis of graphic physical representations for 

simple examples of analyzing circular cylindrical shells. 

A general approach to the analysis of rigid thermoelastic shells by the par- 

titioning method is described below. 

1. We agree to understand rigid shells to be those with such support of the edges 
which will eliminate pure bending strains (the membrane state of stress predominates 
for such supports in an unheated shell upon compliance with all the other conditions for 

applicability of membrane theory far from the edges). 
Henceforth we shall assume that the temperature varies arbitrarily over the shell thick- 

ness. The notation used and the equations are taken from [2]. 

let us proceed from the general equations of shell theory, compiled under the assump- 
tion that the middle surface is referred to an orthogonal disconnected coordinate system 

a,, a2* 

The equilibrium equations have the form (we consider there to be no surface load and 
the state of stress and strain to be caused by the temperature field) 

(1.1) 
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(1.2) 

The elasticity relationships are 

The strain-displacement formulas are 

(1.6) 

k. _ f aAi 
z --- 

AiAj hi i 

For convenience in the subsequent exposition, asterisks have been placed to the right 

of the desired quantities in (1.1) - (1.6) and some new notation has been introduced : 
Ei, R, h,. As yet they must be replaced by ai, I,1 , respectively, and the asterisks 
mkt be omitted. 

As usual, the integral characteristics are introduced in place of the temperature 7’ in 
the elasticity relationships (y is the normal coordinate to the middle surface) 

Ea, +h 4-h 

to = - 
l-v s Tdy, t - $ \ WY 

-h .--h 

(1.7) 

The formula for passing from the forces and moment to the stresses under an arbitrary 
law of temperature variation over the thickness has the form (see [4, 61, for example): 

In the case of a linear temperature over the thickness, only the first two members in the 

right side remain in (1.8). 
Here and henceforth,each equality containing the subscripts i and i should be consi- 

dered as two: one is obtained for i = 1, j = 2, and the other for i = 2, i = 1. 

2, Using the linearity of the problem, let us examine separately the states of stress 
corresponding to the temperature effects t, and t in the notation (1.7). The case (to # 
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0, t = 0) is investigated in [3] where it is shown that the membrane state ofstress holds 
in rigid shells with a constant temperature over the thickness. 

bet us analyze shells with a temperature field (to = OS, t # 0). 
The asymptotics of the desired quantities of the state of stress and strain of a thermo- 

elastic shell has the following form: 

t = h&, 2Ehq = h/2Ehz+ 2Ehw = h-” 2Ehw, 

(T,, s:,) = f~,--~ (&, Sri*), Ng = h$b 

(2.1) 

Gi = he0 Gi,pp Hij = h*a-osHtf* 

The quantities t,, BEhi,, . - ., Htj* in (2.1) are of the same order, h,is the rela- 
tive half-thickness of the shell, and s is the exponent of variability of the fundamental 
state of stress. 

The asymptotics (2.1) is selected by using reasoning analogous to that made in [l] . 

The powers of h,there are selected in such a way that the boundary value problems 
which are obtained for the asymptotics taken as h, --f 0 would not be contradictory. 

We introduce new variables Ei in place of ai by selecting them in such a way that 
differentiation with respect to them would not result in a substantial increase in the iimc- 
tions required ai = he* BE< (2.2) 
Substituting (‘2. l), (2.2) into the shell theory equations, we consequently obtain the sys- 
tem of equations (1.1) - (1.6). Discarding terms with the small factors h*g-@ and 
h*s-3s in (1.2) and (1.4), and retuning to the previous notation, we obtain 

Together with the equilibrium equations (1.1) the elasticity relationships (1.3) and the 
tangential strain-displacement formulas (1.Q the formulas (2.3) form a complete sys- 
tem of equations. Since the bending moments and transverse forces are known, then de- 
termination of the displacements and tangential forces reduces to integrating a system 
of equations which formally agrees with the membrane equations. The terms 0 (h*2-*s) 
and 0 @L+~-~‘) are discarded in the construction of this theory, hence, the error E of 
the system obtained is estimated as: 

E 3 0 (hh2+) (2.4) 

Let us note that the role of the quantities to and t in the state of stress and strain of 
a rigid shell can be estimated. An asymptotic analysis of the thermoelasticity equations 
shows that if the qu~ti~ to is comme~urate with unity and t with h*O, then fore =,% 
the state of stress and strain caused separately by the temperature effects t,, and t are 
commensurate with the displacements, and for c = 2-2s with the stresses, If c > 2-2s 
the quantity t can be neglected to the accuracy of quantities 0 (hi-“’ + !$-a+2u) in the 
analysis of a shell. 

8, As mentioned above, a membrane state of stress occurs in rigid thermoelastic shells 
for to # 0, t = 0. In this case, the question of separation of the boundary conditions 
into conditions for the membrane equations and the condition for the simple edge effect 
is solved exactly as in the nontemperature problem: the tangential conditions axe satis- 
fied because of the arbitrariness of the membrane system of equations, and the residuals 
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which appear in the nontangential conditions are removed by using the simple edge ef- 
fect. Consequently, secondary residuals appear in the tangential conditions, which turn 

out to be small. It can be seen in the examples of simply- and hinge-supported edges 

that the smallness of the secondary residuals is assured by the fact that the moments and 
transverse forces are considerably smaller than the tangential forces in the membrane 

state of stress. 

Let t, = 0, t # 0. Then, as has been shown in Sect. 2, the system of equations( l.l), 
(1.3), ( 1.5), (2.3), which agrees formally with the membrane equations, must be integra- 
ted in order to determine the desired quantities in the thermoelastic problem. 

The boundary conditions in this case must also be selected so that the secondary resi- 

duals which appear as a result of an analysis by the partitioning method, would be small. 
A difficulty hence arises which is related to the fact that the bending moments and trans- 

verse forces for t, = 0 and t # 0 are commensurate with the tangential forces, An 

analogous situation, which occurs in an unheated shell with all edges simply supported, 

is considered in the monograph [2]. Let us use the method applied in [2] to derive those 
boundary conditions which should be taken into account in determining the fundamental 
state of stress and the simple edge effect in a rigid thermoelastic shell with t, = 0, 
t # 0. 

Henceforth, we shall need the asymptotics of quantities of the simple edge effect. Let 
us write it by using [7] and considering that the edge to be given by the equation a, = 

a10 

2Ehw = h,O 2Ehw,, 2Ehui = h*“z 2EhUi, (3.1) 

Sij = h”Z-SSij*) * 2Ehy, = h;‘l12Ehyl,, T, = h;sT,, 

T, = h*OTz*, Hij = h”i a-sH 
* tj*y N1 = h’JzNl*, Gi = he1 Gi, 

The powers of the small parameter h, in (3.1) are selected in such a way that the 

quantities 2Ehw,, 2Ehui*,. . ., Gi* would be of the same order. 
Let M denote any of the desired quantities of the state of stress. Following [?‘I, let 

us give all the required quantities in the form of the sum of three terms 

M = M(p) + h,bMW + h,aM(e) (3.2) 

in which M(p) is the particular solution of the membrane equations, Mch) is the SO~U- 

tion of the homogeneous membrane equations, and M(e) is the solution of the simple 
edge effect equations. The quantities M@) and M@) are found from the homogeneous 

equations, hence, they are preceded by the scale factors hea and h,b which will be se- 

lected as a function of the boundary conditions. The numbers a and b characterize the 

intensity of the state of stress corresponding to the homogeneous solution of the mem- 
brane equations and the simple edge effect equations. 

Let the shell have the simply supported edge czr = alo (it is assumed that there is 
still a clamped edge which makes the shell rigid). In this case the boundary conditions 

are the following: 
T, = 0, S, = 0, G, = 0, N1 = 0 

Within the framework oi the accuracy taken, the corrections due to the torsional moments 
can be neglected in imposing the boundary conditions. 

Taking account of (3. l), (3.2), (2. l), (2.3), let us represent the boundary conditions in 
the form 
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hs2’ (Tip*’ +h,bTI”:) + hi++“‘TI”J = 0 

h$ (S$‘J + h, “S&) + h”;r”*-“SgL = 0 

h*“t, + h;+lG$ = 0, h-s 4 1 &+6 xc A, RaC1 + h;+“YV~~ = 0 
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(3.3) 

Here and later s is the exponent of variability of the fundamental state of stress, As has 
been shown in [l], the values of s should satisfy the inequality 0 < s < i/s. 

Let us select a and b so as to obtain noncontradictory boundary value problems for the 
fundamental state of stress and the edge effect. We set a = - 1. Retaining only the 
main terms in the last two formulas of (3.3), we obtain the following conditions for the 
edge effect in a quite rough approximation: 

Gi(e) = - t, Ni@) = 0 (3.4) 

The conditions for the fundamental state of stress are given by the first two formulas 
in (3.3). We ‘express the quantities Tr@) and &z(e) in terms of t . To this end, we use 
formulas for the simple edge effect quantities derived in [?I, where an iteration process 
has been constructed which permits determination of the edge effect quantities to any 
accuracy. Following [7], we represent each of the edge effect quantities as an expansion 

(3.5) 

The number i after the comma denotes the number of the approximation. 
In order to determine 2’;: and SE!, on the edge, we take the zero approximation 

formulas in [S] and satisfy the boundary conditions (3.4), we consequently find 
Tf; _ See) - 12,0 = 

0 (3.6) 
bet us insert the expansion of the quantities Tl@), S12@) of the form (3.5) into (3.3), 

take account of (3.6) and set b = 0, then by discarding terms 0 (ht4) in the for- 
mulas, we obtain 

T%’ + T$ + Tiei = 0, Sig + s$ + s$ = o (3.7) 

NI”; = _ i at, _- 
4 x, ’ 

Gg =o (3.8) 
’ 

The boundary values T$ and S$ can be found by using the first approximation for- 
mulas [7] and taking account of conditions (3.8). Without reproducing the computations, 
we write the final result, the boundary conditions for the fundamental state of stress 

2’;“’ + Tih’ = - A 

& (ks2Rz’ + 1) t - k2R2’ +- jf- 

S::’ ; S$’ = [-&& R2’kz ( il- $) - klk2R2’ - &] t - 

@I= a3 

--+k2)+&-t+--&&R2’+& 
1 

Let us consider a hinge-supported edge, on which the boundary conditions are written 
as follows: 

T, = 0, u, = 0, Gl = 0, w = 0 (aI = al,,) 
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or 
h;zS (T(P) I.+ + h,bT;z) + h$+“‘Tf+i = 0 

h,-+ (2Eh~~ + h,b 2~h~~~) + h’?“‘2Eh&! = 0 

h,@t + h;+‘Gf; = 0 
hia” (2Ehw:p’ -j- h,b2Ehw$“) + h,a2EIu&’ = 0 

We set a = - 1,, b = - r/s + s. Discarding small terms in the boundary condi- 
tions, we obtain 

T”‘) 
1. 

z _ jr*3 T$, usih) = - I.@ (3.10) 

&(e) _; - t, r.@) = 0 (3.11) 

Proceeding exactly as in the case of the simply supported edge, we express T&e) and 

UZ,$~ in terms of t. Consequently the boundary conditions for the fundamental state of 
stress are written as 

Tih’=T v;g) 
2 2’ 

ks&Q+&+$~r 
2 2 2 2 lb 

(h) 
u2 

_ R,‘2 4{3 (i - ~2) 
-+ - 

R,2 62&z’h 

Here the minus must be selected on the edge for which the inequality al > a,, is sa- 

tisfied, and the plus for the edge with a, 4 alo. 

Remark. If the quantities ka and 1 / R,, vanish simultaneously on the shell edge 
(this will occur, for instance, on the edge coincident with the dire&ix in a cylindrical 

shell),then the asymptotics of the quantities TIfr) and us@) varies as follows: 

Here b should be selected zero. Then, expressing the edge effect quantities in the con- 

ditions for the fundamental state of stress in terms of t, we obtain 

T~~)+T~h)_~&+&~t_-2k 

*+v'A, a R,' t_* 

*l a 2 
l A, au, -L 

2 2 1tfRl 

,p + q) =- 
1 -___ 

Eh A, au, A, 2Eh A, au, A12 

Let us note that the problem for the simple edge effect is solved independently in the 
case of the simply- and hinge-~pported edges. After it has been solved, we obtainb~n- 
dary conditions for the fundamental state of stress. 

Setting a = - 2s, b = 0, we see that the boundary conditionson therigidlyclamped 

edge are partitioned as usual 

ul(P) + Ul@) Z 0, &&PI + u2fQ = 0 

w(e) = - (w(P) + u?(h)), y1fe) = 0, (q = CzlJ 

Thus, partitioning has been achieved: the equations of the fundamental state of stress 

have been obtained, the boundary conditions have been found for the ~ndamental state 

of stress and the simple edge effect. 
Formulas for the simple edge effect quantities which have been derived to hk-8 ac- 

curacy were used in deriving the boundary conditions for the fundamental state of stress. 
The error (2.4) has been admitted in constructing the equations of the ~ndamentalstate 
of stress of thermoelastic shells. And since the total error is determined by the greatest 
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of those admitted, then the formula 

8 = 0 (h*‘@) (3.12) 

holds for the total error of the theory constructed. 

4, In order to determine the stresses in the case (to # 0, t = O), the forces and 
moments must be found by integrating the membrane equations and the simple edge ef- 
fect equations, and then (1.8) should be used. As is shown below, for to = 0, t # 0 the 
principal stresses on the edge and far from the edge can be calculated without calving 

the boundary value problem for the membrane state of stress. 
We derive formulas for the stresses to the accuracy of (3.12). 

Let us examine a simply supported edge. Taking account of (2. l), (3. l), (3.2) and the 
values of a and b we obtain for the stress us on the edge 

3Y G(e) Eat T _- 
2hS 2’ -= 

Retaining only the main terms in the last formula and taking (3.4) into account, we ob- 
tain on the edge 

Tp 
‘ta= T-l-Vgy- 

3y t- &(h*-2) [r9 = g - &T] (hi2) (4.1) 

Here and belowthose transition formulas are written in the square brackets which take 

a simpler form for a linear law of temperature variation along the thickness. The asymp- 

totic order of the stresses under the assumption that the quantity t is commensurate with 
unity is indicated in the parentheses to the right of the formula. 

Analogous reasoning shows that the stress 2; on a hinge-supported edge is determined 

by means of (4. l), while the transition formulas for the stress ‘bus become 

The stresses are determined as follows on a rigidly clamped edge ocl = a,, 

IT 
8;;’ + si,“’ 

12 = 2h . (h;1-2") 

Far from the edges, we obtain in a rigid shell 

Eat 

The stresses his are on the order of h*-1-2s if all the shell edges are clamped, and 
O(h*-81p+8) if the shell has a simply-supported or hinge-supported edge, 

It is seen from the formulas obtained that the greatest stresses (both at and far from 
the edge) are determined by the temperature and the known simple edge effect quanti- 

ties. The stresses in which the forces of the fundamental state of stress entered, are at 
least h*-‘il+s times less than the greatest stresses. 

If the determination of the principal stresses is satisfied, there is no need to solve the 
boundary value problem. However, the solution of the boundary value problem is neces- 
sary for a more exact calculation of the stresses. It is also needed in case the displace- 
ments are of Interest. 
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Nonlinear effects in the propagation, reflection, and refraction of one-dimen- 
sional pulses in a medium consisting of two layers lying on a half-space are con- 
sidered and analyzed. Properties of layers and of the half-space are different, 
and stresses are defined by an expansion in powers of strains. The initial pulse 

of finite duration is specified in the form of boundary condition at the surface 
of the external layer either for the deformation or for the dislocation rate, and 
the problem of wave pattern when the initial pulse amplitude tends to zero, i.e. 
in the case of small nonlinear effects, is solved. 

Problem is solved by the method of successive integration of nonhomogene- 
ous linear wave equations, in which the solution of the linear problem is taken 
as the first approximation and the subsequent approximations are derived by ap- 

proximating the nonlinear terms with the use of the preceding approximation. 

The derived first approximation formulas make possible to solve the inverse problem 
of acoustic determination of the properties of a medium by the parameters of reflected 


